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ABSTRACT 

Additive manufacturing offers a manufacturing technique to produce complex geometry 

prototypes at a rapid pace and low cost. These advantages advocate additive manufacturing for the 

design and production of cellular structures. Cellular structures are interesting because they contain 

a large amount of porosity (void space of air) to manifest a lightweight structure. Designs of 

cellular structures generate a periodic pattern; often of complex geometry, called a lattice.  

 There has been a significant amount of research to maximize specific stiffness of lattice 

structures but little to evaluate low-stiffness lattices. Low-stiffness structures benefit energy 

absorbance through bending of the lattice. This research seeks to assess diamond lattices as low 

stiffness, bending structures.   

 The research involves PA2200 (Nylon 12) laser sintered diamond lattices with 

experimental compression testing and direct FEA model comparison. A correction factor is applied 

for a design offset of laser sintered lattices. Once applied, the experimental and FEA data agree in 

validating the diamond lattice as a bending-dominated structure. Diamond lattices show a 4th order 

relationship between stiffness and parameters of thickness and unit cell length. For density, 

stiffness maintains a 2nd order relationship, as predicted by bending dominated structures. The 

resulting stiffness can be tuned over a stiffness range of four orders of magnitude. Further research 

shows the results for modifying the diamond lattice and scaling stiffness and density using other 

materials (like metals) to expand the range of stiffness and compare diamond lattices on material 
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property charts. Lastly, the effective Poisson’s ratio varies from 0.5 to 0.4 depending on the (t/L) 

ratio.
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CHAPTER 1  

INTRODUCTION TO CELLULAR MATERIALS 

1.1 Background 

Materials containing significant void space –termed porosity-throughout a given volume 

are termed cellular solids.  It is the dispersion of pores throughout a solid that yields a porous 

material. Cellular solids are a sector of materials that is often overlooked for finer details in terms 

of mechanical aspects such as: stiffness, density, and strength. However, if one observes closely, 

one finds numerous cellular materials such as: meshes, foams, and micro-lattices-both natural and 

synthetic. To the average person, cellular materials take the form of foams for packaging or 

cushions that are compliant and energy absorbent. In the culinary profession, cellular solids present 

themselves in the form of foods that are not fully dense, such as: bread and cakes or even a spongy 

mousse. Cancellous bone and wood are also natural cellular materials. Since cellular means a 

material containing porosity, an engineer can take advantage of using cellular materials, which 

present unique balances of properties. For example, lightweight structural elements having the 

capabilities of tuning stiffness and density while also having potential for energy absorbance. 

Multi-functionality is a potential benefit of cellular solids if multiple applications are required.  

A quote from Ashby in 1983 delineates the potential for cellular materials states “When 

modern man builds large load-bearing structures, he uses dense solids: steel, concreate, glass. 

When nature does the same, *she generally uses cellular materials: wood, bone, coral. There must 

be good reasons for this.” [1] It is often found when man-made structures mimic features and/or 

mechanisms of natural systems, high performance integrated systems can be assembled. Natural 
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cellular systems exemplify high performance systems. If man mimicked natural cellular systems; 

optimization of stiffness, strength, and overall weight could create high performance systems for 

new types of structures beyond those currently existent. 

 The designs and shapes of cellular materials are in categories of stochastic and repeating 

structures. Stochastic meaning structures having unpredictability in certain feature sizes regarding 

internal topology or shape; typically foams. Repeating designs implement periodic, long ordered 

structure. Either category usually requires a complex geometry which was frequently limited by 

manufacturing capabilities. Foams made of metal have been around since the 1950’s [2] but were 

not very popular in manufacturing or research because of high costs and the necessity of part-

specific tooling. Another factor limiting interest in stochastic cellular materials was the lack of 

order and predictability in the end product of a manufactured cellular material. Engineers often 

prefer techniques with the ability to manufacture designs of with easily characterized behavior.  A 

manufacturing method to create prototypes consisting of repeated geometries was necessary for 

interest in cellular materials to expand and was answered by Additive Manufacturing (AM). Both 

Engelbrecht and Rosen, et al. support implementing additive manufacturing to the manufacturing 

growth of cellular materials. [3, 4] 

1.2 Additive Manufacturing (AM) Background 

 AM is defined exactly as the name suggests; primarily an additive process as it builds a 

part by the addition of material layer-by-layer. There are a variety of production methods of 3D 

printing using the additive term including Fused Deposition Modeling (FDM), Laser Sintering or 

Melting, and even binder jetting technologies. All of which start constructing a part from a base 

layer of material and then add layers that are combined together by the means tailored to the 

individual AM process (thermoplastic adhesion, laser sintering, and binder gluing). [5] 
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A fundamental advantage of AM is the speed at which the process of manufacturing a part 

occurs relative to traditional manufacturing techniques. AM is much quicker in generating a part 

from start to finish, thus appropriately nicknamed “rapid prototyping”. The quicker process is 

accelerated by taking a CAD model and directly manufacturing a prototype or part. In traditional 

manufacturing methods, often a prototype needs several processes to be completed and could go 

through several people each with a different skill to implement their manufacturing expertise.  

Conventional manufacturing methods such as casting, injection molding or machining, etc. 

entail part-specific tooling. Part-specific tooling of fixtures and other tools specific to the 

manufacturing of a specific prototype or part, generate extra cost for the initial build of a part. 

Since there is an initial cost, the first part is much more expensive than the tenth or hundredth part. 

Additive manufacturing doesn’t require part specific tooling so the first part costs the same as the 

hundredth part.  

Another advantage of AM is the capability to fabricate parts with complex geometry. [5] 

This implies freeform fabrication as the shape of a prototype isn’t limited by production means of 

conventional techniques. AM has the ability to manufacture a complex shape in the same amount 

of time as a simple shape for a structure of the same volume. Here “freeform” means being 

independent of form from the manufacturing process, thus the shape of the final part is independent 

of the manufacturing process for AM. [6] Being independent of form from the manufacturing 

process is highly sought because for traditional techniques; as the complexity of shape increases, 

the manufacturing process becomes much more complex as well. But for AM as the complexity 

of the part is increased, the AM process does not increase complexity-implying freeform. These 

advantages alone make AM a highly useful production method for engineered cellular materials. 



www.manaraa.com

4 

 

With the implementation of AM, the geometric freedom is significantly increased and 

prototypes or low production run parts can be produced at reduced cost. AM allows the user control 

of digital models that can be created and altered to produce  unique geometric structures that 

traditional manufacturing techniques could not offer. The application space for AM is evolving, 

yet some of the processes are limited by the available material and design requirements needed in 

order for a specific AM technique to work. [6] 

 A feature pertaining to AM that would enhance the production performance of final 

products is the utilization of meta-materials. Meta-materials are described as “macroscopic 

composites having synthetic, 3D, periodic cellular architecture designed to produce an optimized 

combination, not available in nature, of two or more responses to specific excitation”. [7] Within 

the realm of cellular solids, meta-materials are defined as the class of materials that exhibit special 

properties integrated together to generate a hybrid cellular structure. Meta-materials use designs 

of cellular solids to yield a wide range of effective material properties for an AM process. By 

taking advantage of AM, complex geometry meta-materials can be efficiently manufactured [8-

10]  

Through variation of the cellular solid design, several material properties could be tuned. 

For instance, meta-materials enable the fabrication of reentrant auxetic structures with negative 

Poisson’s ratio. [11, 12] Auxetic structures are intriguing as negative Poisson’s ratio is a rare 

material property. Negative Poisson’s ratio is defined as a specimen placed in a state of uniaxial 

compression, the structure becomes thinner perpendicular to the applied force and thicker if placed 

in axial tension loading, instead of the usual effect of a structure thickening under a compressive 

load. Other features that can be tuned using AM include thermal expansion [13] and stiffness. 

Tunable thermal expansion could be useful in heat dissipation elements and by tuning stiffness, 
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cellular structures could potentially substitute for bulk materials. The key advantage of AM is 

providing a process to manufacture cellular materials with complex geometry parts while 

maintaining the ability to tailor properties. 

1.3 Applications of Cellular Materials 

 A vast range of applications for cellular materials exists.  Using cellular solids as meta-

materials can optimize the mechanical response for specific applications. Ashby, et al [14] and 

Gibson [15] derive an extensive list of applications which can be summarized as follows:  

 Lightweight structures:  Cellular materials use minimal material, thus reducing cost, while 

serving a secondary purpose of achieving structural efficiency through optimal distribution 

of material. A common application of this combination has been 2D cores for sandwich 

panels in which mass is removed from the core where stresses are typically lower. Synthetic 

2D sandwich panels, such as honeycombs, have been used as lightweight structures for 

aircraft, racing yachts, and spacecraft. Natural examples of sandwich panels are the skull 

and cuttlefish bone. All of which benefit from low density because of reduced weight 

(minimal material) of the core while still maintaining stiffness and strength between panels.  

For structural purposes, natural examples of cellular materials are wood, coral and 

cancellous bone.  Each support large static and cyclic loads for extensive durations. 

Micrographs of wood and cancellous bone are displayed in Figure 1.1 and Figure 1.2 where 

the cellular structure is evident. This porosity allows for reduction in weight meanwhile 

serving as structural support--in fact wood is still the most utilized structural material in 

the world. [15]  
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Figure 1.1: Scanning electron 

micrographs of wood (a) cedar, 

cross section; (b) cedar, 

longitudinal section; (c) oak, cross 

section; (d) oak, longitudinal 

section [16] 

Figure 1.2: Bone micrograph 

displaying the cellular structure 

of cancellous bone [17] 

 

An interesting application for cellular meta-materials exists for biocompatible 

engineered inserts. These are engineered scaffolding for bone replacement and stimulate 

of cell growth using titanium. Since the cellular meta-material is porous, the titanium 

scaffold balances a temporary mechanical purpose for support while also permitting mass 

transport of biological aids for cell regeneration. Ramin [18] has been developing advanced 

CAD software for the creation of  bio-engineered scaffolds and  research is being executed 

by Khanoki, Eosoly, and Cansizoglu [19-21] to optimize design, fabrication, and properties 

of bioengineered scaffold inserts. 

 Energy absorption: Cellular materials have been used as packaging for many years due to 

the fact that foams absorb energy very well. Foams for packaging have low density so low 

added shipping costs, and endure large compressive strains at a near constant plateau stress. 

This means the material can plastically deform for increasing applied strain and maintain 
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a constant stress level, which limits forces transmitted to objects protected by the 

packaging. Because the stress is being held constant, energy is being absorbed from the 

forces transmitted. Further exploration of this feature is presented in later sections. 

Vibration control/dampening and acoustic absorption is also achieved by energy absorption 

as impacts or waves can be mitigated significantly employing cellular structures.  

 Other applications: Cellular materials can be used as filtration devices as well because 

porosity allows certain gases/fluids of smaller particle size to pass through, yet filters out 

particles of larger size. The pore size (porosity) of a cellular material will dictate filtration, 

as the relative density increases, thus smaller pores, larger particles will be filtered. 

Additionally, cellular materials can be buoyant as in cork, buoys, and closed cell foams for 

floating structures. Tunable thermal expansion allows the cellular material to have different 

expansion or shrinkage during temperature change compared to another material it may be 

connected to.  Cellular materials can also be used as heat dissipation devices in the core of 

a sandwich panel. [22] When a cellular solid is conducting of heat, a type of heat fin could 

be formed as the cellular core and a convective cooling gas/ liquid flowing in the 

perpendicular direction to the sandwich panel would shunt heat away. A unique feature 

pertaining to cellular materials is few potential applications can be formed into a 

combination; for example, a 3D sandwich panel of a meta-material core with low density 

and adequate stiffness/ strength made of metal could be energy absorbent while also being 

heat dissipative. This is where applications of cellular materials could be highly interesting 

as multifunctional, load-bearing structures. 
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1.4 Previously Researched Foams and Lattice Structures 

 Meta-materials have been investigated in both stochastic and periodic, ordered lattice 

structures. Stochastic meta-materials are foams possessing unpredictability throughout the interior 

of the structure. The exterior skeleton is often defined by a mold to capture the overall shape. 

However, the interior is stochastic as the foam expansion is frequently processed by the use of a 

foaming agent, heat, and pressure to expand the material. Since a foaming agent is used the interior 

is unpredictable to a certain extent as the interior spacing, size, and location of the porous features 

is not exact. An example of a stochastic foam is presented in Figure 1.3a to show the 

unpredictability of the interior features for the cellular system.  

The design and topology of metal foams is presented in an extensive design guide by 

Ashby, et al [14] in order to fabricate and characterize metal foams with open or closed cells. To 

further characterize stochastic foams, research has been conducted to analyze the deformation 

characteristics for energy absorbing applications [23] and the cyclic properties of open and closed 

cell foams. [24] A unique approach to fabricating metal foams was done by Murr et al., [25] 

utilizing conversion of aluminum foam CT scans to create stochastic foams by the AM process of 

Electron Beam Melting (EBM). Since foams are highly irregular, the stochastic nature will need 

to be evaluated for the direction of loading as the chance of being isotropic is very unlikely. To 

understand this behavior, anisotropy of foams was studied by Huber, et al. [26]  

 
Figure 1.3: Cellular systems: stochastic (a) [27], periodic (b) [27] and 2D extruded 

prismatic metals: mesh in between outer and internal diameter (c) [28], internal mesh with 

solid outer diameter exoskeleton (d) [28] 
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As the interest for meta-materials developed, designs moved away from stochastic 

structures to repeating, periodic structures. This was accomplished by fabrication of 2D cellular 

meta-materials. Examples of 2D cellular systems are honeycomb sandwich panels. Gibson, et al. 

[29] conducted a comprehensive study for the mechanical behavior of 2D cellular materials in the 

form of honeycombs. Mechanical properties of extruded prismatic metals with varying geometry 

have also been researched. [28] Extruded prismatic metals have a 2D cellular structure internally 

whether it’s between the inside and outside diameters for hollow tubes (Figure 1.3c) or the internal 

mesh of a tube with a solid exoskeleton (Figure 1.3d).  

Along with the development of AM, the rise of design space research for meta-materials 

in the form of repeating lattice structures has also increased. Figure 1.3b is representative of a 3D 

cellular structure possessing long range, repeated order. As previously mentioned, AM provides a 

production technique to fabricate 3D meta-materials allowing lattice structures of complex 

geometry to be prototyped allowing the evaluation of mechanical properties.  Here, a lattice is 

defined as a network of connected struts with a defined periodic geometry. For lattice structures, 

the goal of lattice design is to design lightweight structures with valuable combinations of 

properties such as rigidity, flexibility, compliancy, and energy absorbance with the capability of 

tailoring mechanical properties such as: elastic modulus, density, and Poisson’s ratio. This is 

achieved across a wide range of properties by varying the building parameters that directly affect 

the relative density of the lattice. By utilizing a minimal amount of material, the lattice structure 

has low density, thus yielding a cellular solid with high porosity.  

Examples of complex geometries manufactured by AM include a 3D re-entrant 

dodecahedron with auxetic behavior (negative Poisson’s ratio). [30] In order to investigate highly 

structural efficient stretch dominated lattice structures, unit cells in the topology of octet trusses 
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[31] and gyroids [32] have been designed and tested to examine the effect on mechanical properties 

by changing unit cell length. Octet lattice structures have Face-Centered-Cubic (FCC) topology 

resulting in high stiffness. Also, the deformation and failure behavior of Body-Centered-Cubic 

(BCC) unit cells was characterized by Gorny, et al. [33] Figure 1.4 illustrates the complexity of 

shape for the different cellular lattices and why the AM is utilized as the manufacturing strategy 

to research the characteristics of cellular systems. The above mentioned  unit cells, kagome lattices 

[34], and  pyramidal lattices [35, 36] have had significant research to evaluate high elastic modulus 

lattice structures seeking to maximize stiffness; however, much less research has been completed 

on low stiffness structures.  

 
Figure 1.4: 3D cellular structure unit cells: re-entrant dodecahedron (a) [30], octet (b) [31], 

gyroid (c) [32], BCC (d) [33] 

 

1.5 Diamond Lattice Structure and Topology 

Molecular configuration of diamond has a unique FCC unit cell encompassing eight carbon 

atoms. To understand the topology of the diamond unit cell, Figure 1.5 [37] illustrates the 

molecular structure for a diamond unit cell where two interpenetrating FCC lattices are offset by 

a quarter diagonal from the coordinates (0,0,0,) to (
1

4
,

1

4
.

1

4
). Another noteworthy characteristic 

pertaining to Figure 1.5 is all inter atomic connections are of equal length in every direction.  
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Figure 1.5: Diamond lattice molecular unit cell [38] 

 

In designing an additive manufactured lattice structure based on the diamond lattice 

configuration, the atom centers become lattice nodes. Each node is connected to four other struts 

that connect to the other nodes within the unit cell, Figure 1.6 displays Finite Element Analysis 

(FEA) models of the unit cell configuration for diamond. An aspect to observe in Figure 1.6 is the 

wide, sweeping tetrahedral angles of 109.5°. These obtuse angles are the core indication to 

hypothesize the lattice structure to be flexible and compliant. This is derived from the reasoning 

that as a compressive force is applied to the diamond lattice, the broad angles will allow bending 

between tetrahedral struts producing a flexible and compliant structure. Having properties of 

flexibility implies energy can be absorbed and suggests the topology of diamond has potential to 

fill meta-material design space with bending dominated, low stiffness structures of low density.  

To describe the diamond lattice, build parameters are introduced in Figure 1.6. The unit 

cell length (L) is the dimension from the top to bottom surface of the unit cell. The thickness (t) is 

the cross section thickness considering the primary bending direction of a vertical load. The other 

cross section thickness (w) was set to 1.25t to strengthen the lattice in the horizontal orientation to 

assure bending to be consistent about the vertical axis. 
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Figure 1.6: Model for the unit cell structure of diamond 

 

1.6 Thesis Objectives 

The central goal of this thesis explores the mechanical properties of the diamond lattice as 

a low stiffness, bending structure. Research conducted on the diamond lattice hopes to fill meta-

material design space, tailoring properties of stiffness and density in order to define a flexible and 

compliant, energy absorbent lattice structure. Research shows stochastic foams and low elastic 

modulus 2D structures [39] can behave as bending dominated structures, but little has been 

published on the design of 3D lattices for low stiffness. This is design space that can be fulfilled 

by the diamond lattice. The objective of this research is to evaluate the geometry pertaining to the 

unit cell configuration of diamond in order to consider the range of properties attainable. This 

research expands upon previous work done by Goodall, et al  [40] to quantify the mechanical 

properties regarding impact loads of diamond lattices and to assess design considerations for 

impact absorbing structures. [41] The following chapters document investigation of a diamond 

lattice unit cell, analyzing its mechanical behavior and determining if it lies in the bending 

dominated regime.  

Chapter 2 lays out the foundation of cellular materials and lattice systems. Here the 

governing principles are defined to determine dominant load type of the lattice structure (bending 

or stretch) and what type of mechanical response the lattice will possess (low or high stiffness). 

The equations for mechanical response are derived and also the deformation characteristic for the 



www.manaraa.com

13 

 

two types of lattice structures is presented. The chapter concludes by illustrating the design space 

of lattice structures. 

The third chapter presents the results for experimental evaluation of the laser sintered 

diamond lattices and FEA simulation for varying unit cell length (L) and thickness (t). First the 

experimental and FEA methods are introduced to ensure the results are validated properly. 

Verification for the expansion of the diamond lattice is justified by considering the change as the 

diamond lattice size is increased. Then the results of the experimental and FEA results are directly 

compared and agree with a solution for a design offset as a correction factor for laser sintered 

diamond lattices. 

The fourth chapter will provide variations of the diamond lattice through modifying build 

parameters other than unit cell length (L) or thickness (t). Changing other build parameters will fill 

gaps of design space for diamond lattices to further evaluate the range of properties attainable. 

These results are used to scale the diamond lattices’ stiffness in varied materials and compare them 

to other material options using material property charts. Upon overlaying the diamond lattice data 

onto material property charts the full amount of design space for diamond lattices can be observed 

to show the potential for applications. 

Lastly, Chapter 5 will provide the conclusion to this thesis work. In addition, 

recommendations for future work are provided to further expand the level of understanding for the 

diamond lattice structure.  
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CHAPTER 2  

FOUNDATION OF CELLULAR MATERIALS 

An broad foundation has been provided by Ashby [15, 42] for characterizing cellular 

materials as meta-materials. The goal of creating meta-materials is to provide a lattice structure 

that is a lightweight, load bearing structure with potential secondary functions of energy 

absorbance, thermal dissipation, etc. described in Section 1.3. This chapter describes the principles 

characterizing the behavior of lattice structures as meta-materials and what type of response the 

lattice will have.  

Here, it is important to differentiate between open and closed cell lattices. Open cell lattices 

like those of Figure 2.1 have an open faces for the boundary of the unit cell. Closed cell lattices 

similar to Figure 2.2 have a sheath or a film that encloses the unit cell of the structure. With this 

sheath sealing the unit cell of the lattice, the complexity of closed cell mechanical property 

equations increases.  Stretching of the sheath (face stretching) and compression of the gas/liquid 

within the unit cell complicates the mechanics of closed cell lattices. Imagine as the closed cell 

lattice is compressed, the face sheath is stretched in the direction perpendicular to the applied force. 

Upon stretching the sheath, the reaction must be accounted for in the property equations. Since the 

closed cell lattice has a gas or liquid trapped in the unit cell, compression of the enclosed fluid 

should also be accounted for when deriving the equations. However, if the thickness of the sheath 

(𝑡𝑓) is much less than the thickness of the strut and also a material with less mechanical strength 

or the surrounding pressure is equal to atmospheric pressure, then both effects can be regarded as 

negligible. Typically most lattice structures researched are open cell as they are simpler to 
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manufacture and analyze. Throughout the remainder of the thesis all following equations and 

analysis are for open cell lattices.  

   

Figure 2.1: Open cell lattice Figure 2.2: Closed cell lattice 

2.1 Governing Principles of Cellular Lattice Materials 

There are three principles that govern the properties of cellular lattice materials. [42] Figure 

2.3 below illustrates the governing principles of cell topology and shape, material, and relative 

density in a flowchart. Each principle is then broken down into sub-categories to describe each 

principle in further detail. The next sections will provide detail about each principle to characterize 

how the lattice structure will behave.  

 

Figure 2.3: Flowchart of governing principles for lattice structures [42] 
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2.1.1 Material Selection 

The first governing principle is the Material from which the lattice structure is made. By 

selecting the material, the range of mechanical properties is determined by the chosen material. In 

other words, if a metal is selected to construct a lattice structure, it will have much different 

mechanical properties than if the same lattice is constructed from a thermoplastic. A lattice made 

of metal will have significantly higher stiffness, strength, density, and thermal conductivity, but 

the thermoplastic will have the advantage of higher compliance and lower thermal conductivity. 

However, a metal lattice has the potential to be low enough in stiffness and strength to mimic bulk 

properties of thermoplastics like Nylon. This is accomplished by decreasing the effective density 

of the metal lattice low enough to behave as if it was a fully dense thermoplastic. This a feature of 

cellular lattices that is advantageous and noteworthy.  

2.1.2 Cell Topology and Shape 

Upon designing a lattice topology and shape, many aspects of the structural behavior are 

set. Cellular lattices are categorized into either stretch or bending dominated structures. Bending 

dominated lattices are distinguished by properties of flexibility and compliance for energy 

absorbance, yet a lower to moderate strength. Stretch dominated lattices are much more structural 

efficient but sacrifice any sort of compliance. As compliance is diminished, the lattice can no 

longer absorb energy.  

Maxwell’s criterion relates the geometric connections of the structure to the mechanical 

behavior of the lattice as being more stretch-dominated or bending-dominated. Maxwell’s criterion 

[43] is given by: 

 M = b – 2j + 3 : (2D)  

 M = b – 3j + 6 : (3D) 

Equation 1 
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where (b) represents the number of struts and (j) being the number of joints. Therefore lattice 

structures are split up in two divisions: one being bending dominated behavior and the other stretch 

dominated. If M < 0; the lattice structure will be governed by bending dominated behavior. 

Conversely, when M ≥ 0; the meta-material lies in the stretch dominated regime. 

 Figure 2.4a below displays a bending dominated mechanism if the joints are bonded 

together. When a compressive force is applied the struts endure deformation and deflection and 

yield by bending. Its counterpart Figure 2.4b, however, will not bend because it has a support strut 

across the middle of the mechanism. Now when a compressive force is applied to the mechanism, 

the center crossbar is “stretched”. This enables stretch dominated lattices to be much stiffer as the 

elements now bear tensile loads, thus increasing the strength. A stretch dominated lattice is 

presented in Figure 2.5. Since there are multiple struts combining into one joint, Maxwell’s 

equation calculates to M = 18 [42] to clearly define Figure 2.5 as a stretch dominated lattice. When 

a compressive force is applied to the lattice in Figure 2.5, the struts will be in either tension or 

compression creating a high strength lattice. This lattice also characterizes meta-material structures 

precisely as the mechanical response will be unique when placed in loading conditions. 

 

 

Figure 2.4: Example of bending (a) vs 

stretch (b) dominated behavior with 

deformation after compressive force 

Figure 2.5: Example of stretch dominated 

lattice [42] 



www.manaraa.com

18 

 

2.1.3 Relative Density 

The relative density is a key principle because it has a major influence on effective 

mechanical properties of a lattice structure through the determination of thickness (t) and repeating 

unit cell length (L) seen in the open cell lattice of Figure 2.1.  Thickness (t) is defined by the width 

of the struts and unit cell length (L) characterized by the distance from the top to bottom strut of 

the unit cell As the thickness (t) is increased or the unit cell length (L) is decreased, the lattice 

material will occupy an increased amount of volume within the unit cell of a lattice structure. As 

the volume of material increases within a unit cell, the density will also increase. Oppositely, if 

the thickness (t) is decreased or the unit cell length (L) is increased, the material will occupy a 

decreased amount of volume thus decreasing the density of the lattice structure. Manipulation of 

the density directly effects the mechanical properties, these relationships will be derived and 

analyzed in later sections.  

2.2  Bending Dominated Behavior 

As mentioned previously, bending dominated lattices have mechanical properties 

consisting of compliance and flexibility, yet a moderate to low stiffness. The structure in Figure 

2.4a can only resist deflection due to the fact that the actual parts do not have pin joints but rigid 

bonds.  When a force is applied, the members bend. This is advantageous in applications especially 

requiring energy absorbance where flexibility and compliance are crucial.  

2.2.1  Bending Dominated Relative Density vs Relative Elastic Modulus Derivation 

Most open cell lattice structures will have more complex topology than the simple example 

in Figure 2.1. However, if the lattices deform and fail by the same mechanisms, then the 

mechanical properties can be understood using dimensional arguments which omit all constants 
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arising from the specific cell geometry. [15] For bending dominated structures, the relative density 

is defined by a squared relationship of t/L below in Equation 2 [15]: 

 ρ*

ρ
𝑏𝑢𝑙𝑘

∝ (
𝑡

𝐿
)

2

 Equation 2 

 

 

The relative density is termed the effective density of the lattice (ρ*) divided by the bulk material 

density (ρ
𝒃𝒖𝒍𝒌

). If the cross section is scaled uniformly, the second moment of area is proportional 

to the characteristic cross section dimension t raised to the fourth power, (𝐼 ∝  𝑡4). Moreover, 

standard beam theory [44] suggest that deflection (δ) is proportional to properties of Equation 3, 

where elastic modulus (𝐸𝑏𝑢𝑙𝑘) is the modulus of bulk material. Deflection (δ) is demonstrated in 

Figure 2.6 to illustrate how the lattice will deflect.  

 
𝛿 ∝  

𝐹𝐿3

𝐸𝑏𝑢𝑙𝑘𝐼
 

Equation 3 

 

 

Also considering the conventional stress and strain relationships of: σ ∝ 𝐹 𝐿2⁄  and  𝜀 ∝  𝛿 𝐿⁄   to 

combine with Equation 3 yields Equation 4. 

 
𝐸∗  ∝  

𝜎

𝜀
 ∝  

𝐸𝑏𝑢𝑙𝑘𝐼

𝐿4
 

Equation 4 

  

By substituting the second moment of area equation (𝐼 ∝  𝑡4) into Equation 4, Equation 5 is 

derived to directly relate relative elastic modulus and relative density for bending dominated 

structures where (𝐸∗) and (𝜌∗) are effective modulus and density pertaining to an individual 

lattice. 

 𝐸∗

𝐸𝑏𝑢𝑙𝑘
 ∝  (

𝜌∗

𝜌𝑏𝑢𝑙𝑘
) 2 

Equation 5 

 

 

Relative stiffness can be represented in another equation involving thickness (t) and unit cell length 

(L) by substituting the relative density relation of Equation 2 into Equation 5 to give Equation 6 
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below. The relationship of (t/L) to relative stiffness is to the fourth power, so modifying (t) or (L) 

will change relative stiffness significantly.  

 𝐸∗

𝐸𝑏𝑢𝑙𝑘
 ∝  (

𝑡

𝐿
) 4 Equation 6 

 

Figure 2.6: Bending dominated structure under applied force (F) with deflection (δ) [42] 

 

2.2.2 Bending Dominated Deformation Characteristics and Derivation 

As formerly stated, bending dominated lattices have flexibility. Thus, bending dominated 

structures absorb energy much more effectively that stretch dominated structures. Observing 

Figure 2.7, a stress-versus-strain curve for bending (red) and stretch (blue) dominated structures 

typically shows the following trend of stress for increasing strain.  

 

Figure 2.7: Stress vs strain for bending and stretch dominated structures [42] 

Stretch dominated Bending dominated 
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Three regimes of deformation occur for bending dominated structures as illustrated in 

Figure 2.7. The first is the linear elastic portion of the curve. In this region the main deformation 

is concerned with bending of the lattice struts. Next is the plateau stress of the lattice where the 

onset of cell collapse by yielding, bucking, and crushing will ensue. Following the plateau stress 

is the last region of densification where a sharp increase in stress takes place as the lattice structure 

is collapsed so that the cell struts are now in contact with each other. The feature to be highlighted 

from this curve is the plateau stress at which as the stress is nearly constant for a wide range of 

increased strain. Over this strain area, the lattice is bending and collapsing to absorb the energy 

applied to the lattice. The area under the stress-vs-strain curve is significantly greater for bending 

dominated lattices, thus permitting much more energy absorbance. Bending dominated lattices 

excel in energy absorbance and impact resistant structures. The plateau stress (𝜎𝑝𝑙𝑎𝑡) can be 

derived in the following manner: cell walls start to yield when the force exerted on them exceeds 

their fully plastic moment of Equation 7 below with 𝜎𝑏𝑢𝑙𝑘 being the yield strength of bulk material 

the lattice is constructed of. [42] 

 

𝑀 ∝  (
𝜎𝑏𝑢𝑙𝑘𝑡3

4
) 

 

Equation 7 

 

 

The moment from Equation 7 is related to stress in the conventional form of Equation 8: 

 
𝑀 ∝  𝐹𝐿 ∝  𝜎𝐿3 

Equation 8 

 

 

By inserting Equation 7 into Equation 8, and remembering Equation 2 is the thickness 

divided by unit cell length (t/L) proportional to the square root of relative density derives Equation 

9 for the relative strength of a bending dominated lattice, where the plateau stress (𝜎𝑝𝑙𝑎𝑡) level can 

be found. 
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𝜎𝑝𝑙𝑎𝑡

𝜎𝑏𝑢𝑙𝑘
 ∝  

1

4
(

𝜌∗

𝜌𝑏𝑢𝑙𝑘
)

3/2

 

 

Equation 9 

 

 

At the point of the plateau stress(𝜎𝑝𝑙𝑎𝑡), three failure modes of: plastic yielding/bending, 

elastic buckling, or collapse by brittle fracture compete. The failure mechanism that requires the 

lowest stress will prevail in failure. [42] For bending dominated lattices made of ductile materials, 

the most likely mode of failure will be the onset of plastic yielding and bending at the unit cell 

boundaries. Figure 2.8a illustrates plastic yielding of the corners of the unit cell. Plastic yielding 

is the failure mode allowing the longest plateau stress to be reached because the lattice will keep 

bending until the densification strain is reached. As the lattice is enduring increasing strain, thus 

further and further plastically deformed, the stress is held constant to absorb energy over the 

greatest amount of area. Elastomeric lattice materials like rubber fail by buckling (Figure 2.8b). 

Also the larger the slenderness ratio (t/L) of the struts, the greater chance of buckling due to the 

fact of a larger slenderness ratio reduces the Euler buckling load. [45] Brittle lattices have the 

smallest region of plateau stress. Ceramic lattices are an example of brittle fracture failure and 

collapse by successive fracturing of the unit cell, initialized in Figure 2.8c. An extended plateau 

stress region is preferred for bending dominated lattices, therefore the more ductile the material 

chosen will generate higher energy absorption through more. 

 

Figure 2.8: Bending dominated failure modes; (a) plastic bending (b) buckling (c) brittle 

fracture [42] 
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2.3 Stretch Dominated Behavior 

Unlike bending dominated, stretch dominated structures are designed for high structural 

efficiency. High structural efficiency is aimed to maximize the specific stiffness and strength ratio. 

This is accomplished by constructing a lattice to have significantly high stiffness and strength, yet 

keeping in mind the centralized goal of minimum material through low relative density.  A stretch 

dominated lattice generates high stiffness and strength through the means of having added supports 

in a unit cell. Figure 2.4b represents these additional supports now carrying tension or compression 

depending on the loading. As mention previously, as Figure 2.4b is loaded in compression, the 

middle crossbar is now placed in a state of tension, thus implying the “stretch”. Once a support is 

in a state of tension, the stiffness and strength sharply increases due to the fact that slender 

structures are much stiffer when stretched than when bent and/or compressed. [46]  

Figure 2.5 displays an octet truss system; this lattice network takes the geometry of an FCC 

lattice structure and because it has many supports throughout the unit cell it also has the potential 

to be in many possible states of self-stress. Self-stress means that the geometry of a lattice assembly 

over constrains the structure. Implying that the struts are stressed even when the lattice assembly 

doesn’t have any external loads. The octet lattice of Figure 2.5 is a great example of a stretch 

dominated lattice that will have high stiffness and strength while also being in a state of self-stress 

when no external loads are present. 

  Stretch dominated lattices first respond by elastic stretching of its struts. For stretch 

dominated lattices, an average of one third of its struts carry tension when the structure is loaded 

in simple tension. [42] Through the same approach as bending dominated lattices, stretch 

dominated structures derive a relationship for relative density and elastic modulus of Equation 10 

below.  
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Equation 10 presents a linear relationship of relative stiffness to relative density for stretch 

dominated structures. A linear relationship (power of one) makes stretch dominated lattice stiffer 

by of a factor of 3-10 for the same relative density of a bending dominated lattice (power of two). 

 
 

𝐸∗ 

𝐸𝑏𝑢𝑙𝑘
 ∝  

1

3
(

𝜌∗

𝜌𝑏𝑢𝑙𝑘
) 

 

Equation 10 

 

 

Figure 2.7 depicts the stress versus strain behavior of stretch dominated lattices where a 

plateau stress is no longer evident like that of a bending dominated structure. Without any plateau 

stress, the area is much less under the stretch dominated stress-vs-strain curve; thus having much 

less capability of energy absorbance. Stretch dominated structures fail first by the onset of plastic 

deformation by stretching. The next response is post-yield softening after the initial yield, 

plastically buckling, or brittle collapse of the struts follows. Post-yield softening consists of a 

severe decrease in stress as strain is further increased past the initial yield. With the action of post-

yield softening, stretch dominated structures are not ideal candidates for energy absorbing 

applications as a flat plateau stress is desired. The last regime of failure is same as bending 

dominated for densification of the lattice. The key takeaway for stretch dominated lattices is that 

both the modulus and initial collapse strength are much higher than bending dominated, suiting 

them for lightweight structural applications requiring high specific stiffness and strength.  

2.4 Potential Design Space for Lattice Structures 

An interesting approach for lattice structures is to plot the relative modulus versus relative 

density. Figure 2.9a and Figure 2.9b compare bending dominated to stretch dominated behavior 

with the relationship of relative modulus and strength to relative density with a few existing 

researched cellular structures. The slopes of the curves; 2 for bending dominated and 1 for stretch, 

on a log-log plot are applied from the relative modulus and strength limits. From the upper bound, 
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bending dominated structures decrease in modulus more rapidly with a quadratic relationship. This 

reinforces the idea of stretch dominated lattice being stiffer by a factor of 3-10 (for the cellular 

solids/lattices relative density range), approaching 10 as the relative density is decreased further 

and is observed when compared in Figure 2.9 

  
Figure 2.9: Relative modulus vs relative density(a) and relative strength vs relative density 

(b) [46] 

 

Ideal bending dominated behavior slices right through the area of foams, confirming that 

bending dominated structures will behave as energy absorbers similar to foams. Foams envelope 

such a wide area outside of the ideal bending line because many foams heterogeneous structures. 

Because foams are stochastic, strong and weak zones exist causing the stiffness to fluctuate, 

resulting in the wide area. 2D honeycombs lie on the ideal stretch line. This is due to the 

exceptional structural efficiency of honeycombs when loaded parallel to its hexagonal axis. Other 

researched lattices of Kagome and pyramidal lattices are slightly below ideal stretch behavior. It 

is encouraging to observe 3D lattice structures have the potential to fill voids on the relative 

stiffness versus relative density chart. The potential to fulfill unoccupied areas of stiffness versus 
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density is the baseline motivation for cellular meta-materials and the reason current research is 

being conducted.  
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CHAPTER 3  

DIAMOND LATTICE NUMERICAL STUDIES AND EXPERIMENTAL COMPARISON 

3.1 Diamond Lattice Build Parameter Details 

To explore how the diamond lattice would change mechanical properties, a wide range of 

unit cell lengths and thicknesses were manufactured through Laser Sintering (LS) and also 

analyzed in FEA. Unit cell lengths (L) were modified from 5 – 20 millimeters and thickness of the 

struts (t) varied from 0.5 – 2 millimeters, both parameters shown in Figure 1.6.  

In order to understand how the parameters of unit cell length (L) and element thickness (t) 

vary the configuration of the diamond lattice, hence, directly the effective density of a combination 

of unit cell length (L) and thickness (t), Solidworks models are rendered below. All of the laser-

sintered diamond lattices and Solidworks models were (2x2x2) arrays of unit cells except where 

noted. As previously mentioned, the thickness (t) is the cross section thickness in the primary 

bending direction under a vertical load.  The other cross section dimension (w) was set to 1.25t to 

assure bending about a consistent axis. Figure 3.1 portrays the effect of thickness for a constant 

unit cell length of 10 mm. As the thickness is increased from 0.5 – 2 mm, the relative density of a 

diamond lattice with a 10 mm unit cell length increases significantly from 2.15 to 27.55 %. 

When the thickness is held constant while varying unit cell length, relative density is changed 

in an inverse proportion. Figure 3.2 below shows a constant 1 mm thickness and varying the unit 

cell length from 5 – 20 mm. As the unit cell length increases, the relative density decreases because 

increasing the distance from top to bottom of the unit cell makes the thickness of the struts 
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proportionally smaller as seen below.  It is worthy here to note the effect of relative density by 

adjusting the unit cell length and thickness for the reason that it directly affects the mechanical 

response of the diamond lattice. 

    

t = 0.5 mm t = 1 mm t = 1.5 mm t = 2 mm 

Figure 3.1: Variation of element thickness (t) for unit cell length (L) of 10 mm 

 

 

 

 
L = 5 L = 10 L = 20 

Figure 3.2 : Variation of unit cell length (L) for constant element thickness (t) of 1 mm 

 

3.2 Experimental Research Method 

Diamond lattice samples consisting of 2x2x2 arrays of diamond lattice cells were fabricated 

on an EOS Formiga P100 from PA2200 powder (50% virgin, 50% recycled) with a powderbed 

temperature of 170 C using 0.100 mm layers and 0.25 mm scan spacing. Scan speeds were 2500 

mm/s on hatching and 1500 mm/s on the edges using 21W and 16W respectively. All parts were 

printed in the XYZ orientation as defined in ASTM F291-11. Parts were positioned at least 45 mm 

from the edges of the build volume and allowed to cool overnight before removal from the powder 

bed.  The parts were cleaned with compressed air.  Compression testing was performed on a Tinius 
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Olsen Model H5K-S UTM 5kN testing system using the axis motion to calculate the applied strain.  

The displacement rate was adjusted to maintain a constant strain rate of 5%/min for all samples. 

Three to five samples were tested for each condition. 

 A schematic of laser sintering process is shown below in Figure 3.3 and summarized in the 

following. Laser sintering systems lay down a layer of powder leveled by a roller in a heated build 

chamber just below the melting point and/or glass transition temperature of the powdered material. 

Once the roller levels the powder, cross-sectional sintering or fusion of the powder particles takes 

place by a 𝐶𝑂2 laser in the geometry digitally controlled. The surrounding powder that isn’t 

thermally fused acts as support for following layers so the need for additional supports is 

eradicated. The process repeats with additional layers of powder by lowering the build platform 

by one layer thickness and laser sintering of the specified geometry until the part is finished from 

the base to top layer. [6]  

 

Figure 3.3: Laser sintering process [6] 
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3.3 FEA Simulation Method 

The compression tests were simulated using finite element analysis (FEA) in SolidWorks™. 

Boundary conditions were chosen to model the experimental compression testing with a fixed 

lower platen of a compression tester with an applied displacement on the top as illustrated in Figure 

3.4 below. For the simulation, the diamond lattice’s bottom pads were set to a zero displacement 

in the z-direction.  The bottom center contact point was fixed in all directions. This enabled the 

other bottom pads to slide in the x and y directions to accommodate transverse displacements. 

Motion in the x and y direction of bottom pads is characterized as “slipping” meaning the bottom 

pads would translate horizontally on a bottom plane as the diamond lattice is compressed. The top 

pads (seen in Figure 3.4 below) were set to a fixed displacement in the z-direction. A fixed 

displacement (δ) was set to simulate a certain desired strain for compression of the diamond 

lattices.  For example, if the unit cell length of 10 mm (height of 20 mm for 2x2x2 array) was 

displaced 1 mm, this created an effective strain of 5%. The manufacturer supplied bulk properties 

values for Nylon (PA 2200: 1.7 GPa for modulus, 0.394 for Poisson’s ratio, and 930 kg/m3) were 

used for the material properties in the simulation. Ahmadi [47] and Campoli [48] both support 

similar methods of FEA for evaluating properties of open cell porous structures.  

A mesh convergence study was conducted for the various unit cell lengths and thickness 

combination to ensure refinement of the mesh was sufficient to have less than 1-2 % change in 

reaction forces when halving the element size.  Large deflection conditions (Non-Linear 

Simulation) produced no more than 0.84 – 1.5 % deviation as compared with linear analysis for 

1% applied strains so linear results at 1% applied strains were used for all effective elastic modulus 

results reported below. 
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Fixed Displacement – Top Plane Pads   (z-Dir)  

 
  

Zero Displacement - Bottom Plane Pads  

With Fixed Center Pad (z-Dir) 
 

Figure 3.4: Boundary conditions for 

simulating compression testing of diamond 

lattice 

Figure 3.5: Plot of z displacements in a 

simulated diamond lattice under an 

applied displacement of (δ). 

 

Representative resulting diamond lattice deformations are illustrated above in Figure 3.5 

with an applied displacement of (δ). The resultant force on the bottom pads was extracted to 

estimate the force of compression. After the resultant force was extracted it was converted to stress 

as the resultant force over the bottom plane area; the stress divided by the applied strain value 

produced an effective elastic modulus(𝐸∗). 

Additional simulations were performed to determine whether the compression stiffness of 

the 2x2x2 arrays of unit cells is representative of the bulk properties of 4x4x4 and 6x6x6 unit cell 

arrays with many more unit cells (N) as illustrated in Figure 3.6. The 4x4x4 and 6x6x6 models 

were cut into quarter models in an effort to reduce simulation run time meanwhile obtaining 

accurate values of stiffness. Then symmetry conditions were applied to the quarter models 

(example of original and sliced 4x4x4 lattice shown in Figure 3.7 & Figure 3.8 below along with 

the same zero and fixed displacements as previously applied. Now however, the absolute fixed 

point was at the intersection of the two symmetry planes. 
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2x2x2 Lattice, 

N =8 

4x4x4 Lattice, 

N=64 

6x6x6 Lattice, 

N=216 

   

Figure 3.6: Diamond lattices with different numbers of unit cells 

 

 

 

 

 

Figure 3.7: Original 4x4x4 

lattice 

Figure 3.8: Simplified 4x4x4 unit cell 

diamond lattice model after applying 

symmetry conditions  

 

The stiffness of the larger models was calculated as before and compared to the 2x2x2 unit 

cell values. Figure 3.9 compares the relative stiffness on a log-log scale for the different number 

of unit cell lattices studied. Observing Figure 3.9 shows the relative stiffness fluctuates only 

slightly (~5%) and maintains a close to constant line for the different combinations of (t) and (L). 

Symmetry Conditions 
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The change of elastic modulus has a max of 7% with most points floating between 4 – 6 % and the 

error from using the smaller test sample (2x2x2 unit cells) is minimal compared to the modulus 

variation of over 1000x across the geometries studied.  

 

Figure 3.9: Relative stiffness study for different number of unit cell lattices 

 

3.4 Experimental vs FEA Results 

The range of lattice conditions used in the simulations and in experiments are summarized 

in Table 1. Simulation results predict a change of elastic modulus proportional to the power of four 

for a given thickness and unit cell length. These trends are presented in Figure 3.10 and Figure 

3.11 below. The approximate fourth power relationship (varying from 3.83 – 4.07) with most of 

the exponents existing in the range of: 4 +/- 0.04.The fourth power relationship supports the 

assertion that diamond lattices are bending dominated structure, recall Equation 6 is the derivation 

of effective stiffness (elastic modulus) as a proportional fourth power relationship between 

thickness (t) and unit cell length (L).The results can be condensed to a relationship between the 

effective modulus and the ratio of element thickness to unit cell length (t/L). This relationship is 

represented in Figure 3.12 below. A special note for the (t/L) ratio, the cellular solids relative 
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density limit of 30% equates to a (t/L) value of 0.2 As (t/L) increases, both the density and the 

stiffness increase as well. Since a thickness/length ratio (t/L) can be achieved with various 

combinations of unit cell length and thickness, other considerations such as process accuracy, build 

time can be utilized to select the specific parameters used to obtain to generate a diamond lattice 

for a specific application.  

Table 1: Range of FEA and experimental stiffness for size parameters 

Unit Cell Length 

(L) [mm] 

Thickness 

(t) [mm] 
(t/L) 

FEA 

Simulation 

Eeff (MPa) 

Experimentally 

Measured 

Eeff (MPa) with 

St. Dev. 

5.0 0.5 0.100 3.59 0.504 ± 0.013 

5.0 1.0 0.200 56.77 21.37 ± 0.483 

5.0 1.5 0.300 263.51 N/A 

5.0 2.0 0.400 708.33 N/A 

7.5 0.5 0.067 0.69 0.099 ± 0.016 

7.5 1.0 0.133 11.29 N/A 

7.5 1.5 0.200 56.27 N/A 

7.5 2.0 0.267 169.54 N/A 

10 0.5 0.050 0.21 0.040 ± 0.0004 

10 1.0 0.100 3.51 1.56 ±0.010 

10 1.5 0.150 17.97 10.93 ± 0.521 

10 2.0 0.200 55.98 29.77 ± 1.585 

12 0.5 0.042 0.10 N/A 

12 1.0 0.083 1.66 0.76 ± 0.022 

12 1.5 0.125 8.59 N/A 

12 2.0 0.167 27.21 N/A 

15 0.5 0.033 0.04 N/A 

15 1.0 0.067 0.67 0.27 ± 0.007 

15 1.5 0.100 3.47 N/A 

15 2.0 0.133 11.10 N/A 

20 0.5 0.025 0.012 N/A 

20 1.0 0.0500 0.209 0.80 ± 0.004 

20 1.5 0.075 1.076 N/A 

20 2 0.100 3.45 N/A 
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Figure 3.10: FEA calculated effective 

modulus vs element thickness (t) 

Figure 3.11: FEA calculated effective 

modulus vs unit cell length (L) 

 

Figure 3.12: FEA calculated effective modulus of diamond lattice vs (t/L) compared to 

experimentally-measured effective modulus values and designed (t/L). 

 

The stiffness of the LS components measured from the compression test data is 

summarized in Table 1 and presented on Figure 3.13 and Figure 3.14 .  Only the unit cell size of 

10 mm has sufficient points to fit a relationship to effective modulus (Figure 3.13).  It has an 

exponent significantly higher than predicted by the FEA (4.8).  The experimental relationship with 

unit cell size is much closer to the FEA results with exponent of 3.7 and 4.02 for 0.5 mm and 1.0 
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mm element sizes respectively.  It is also noted from Figure 3.13 and Figure 3.14 that the effective 

modulus measured experimentally is substantially below the FEA predictions for all the tests cases 

though the difference is reduced at larger element size (t) values. This may be explained by the 

surface characteristics of LS components.  

  

Figure 3.13: FEA vs experimental values of 

the effective lattice modulus vs element 

thickness (t) 

 

Figure 3.14: Comparison of FEA simulated 

to experimentally measured effective 

modulus vs unit cell length (L) 

 

Laser sintered PA 2200 generally leaves partially densified layers on the outer surface of 

the part geometry that contributes to weight and thickness measurements, but does not influence 

strength and stiffness characteristics. This means that a designed part may not have the designed 

strength and stiffness intended because the measured thickness is not fully supporting the part 

geometry. Figure 3.15 below is an SEM image of the surface of a LS part cleaned with compressed 

air that illustrates the lightly compacted layers and surface roughness of laser sintered PA 2200. 
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Figure 3.15: SEM image of laser sintered PA 2200 fracture surface illustrating surface 

structure of a single laser pass after air cleaning 

 

 These partially densified surface structures would substantially decrease the effective 

modulus of the thin printed elements to create a lower experimental measurements of effective 

modulus. Further, a consistent low density surface layer would have a larger impact on the thinner 

components and could produce the larger errors observed in the thinner element sizes.  In order to 

further evaluate this possibility, the effective element size of each experimental element that would 

give the measured modulus values was calculated by scaling the FEA predictions based on the 

fourth order power relationship observed above.   

The effective element size calculated for each experimental condition is summarized in 

Table 2.  It is noted that the difference between the designed thickness and the effective thickness 

varies between 0.184 and 0.317 mm with an average of 0.211 mm for the variety of diamond 

lattices printed. The difference remains consistent across feature sizes from 0.5 mm to 1.5 mm.  

The lightly compacted layers for laser sintered parts directly effects the performance of the 

diamond lattices in relation to the elastic modulus. Table 2 indicates 0.5 mm thickness lattices have 

the largest difference of FEA to experimental elastic modulus and this is explained because the 
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0.211 mm effective thickness error is a much greater percentage of 35 – 41 % of designed 

thickness. As the thickness increases, the lightly compacted layers contribute to less of the 

designed thickness (close to 20%), thus reducing the divergence between experimental and 

simulated results. 

Table 2: Effective thickness evaluation for FEA and experimental modulus deviation 

Unit Cell 

Length (L)  

Thickness 

(t) 
Effective Thickness 

Error 

Percentage of 

Designed 

Thickness 

𝐄𝐅𝐄𝐀

𝐄𝐞𝐱𝐩.
 

5.0 0.5 0.204 41% 7.11 

7.5 0.5 0.202 40% 6.94 

10 0.5 0.177 35% 5.12 

5.0 1.0 0.228 23% 2.66 

10 1.0 0.193 19% 2.25 

12 1.0 0.187 19% 2.29 

15 1.0 0.213 21% 2.47 

20 1.0 0.225 23% 2.63 

10 1.5 0.184 12% 1.64 

10 2.0 0.307 15% 1.88 

 

Given the consistent magnitude of the difference between the design and effective 

thickness values, this could be applied as a design offset. The average of the effective thickness 

error calculated for all parts was subtracted from the design thickness to calculate an effective 

thickness.  The effective modulus results are replotted in Figure 3.16.  Since now the effective 

thickness is being applied for experimental results, the points are essentially shifted and promptly 

coincides to an enhanced resemblance to the numerical simulations.  The substantially improved 

agreement between FEA and experimental measurements with this correction suggests that this is 

an easy way to compensate for the process effects on material stiffness when designing for a target 

stiffness level.    

In practice, there may be additional sources of error including variations in material 

properties with thickness and errors in unit cell size, but these factors are unlikely to cause the 
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large differences in experimental modulus values observed since unit cell size errors are much 

smaller and the lattice modulus value varies only linearly with material modulus of elasticity.  

Figure 3.17 plots the experimental and FEA modulus values against the (t/L) ratio, but utilizes the 

adjusted thickness values (design thickness minus average thickness error) for the experimental 

values. With this adjustment, the experimental and FEA results show good agreement. Careful 

assessment of these other error sources may yield further improvements in the prediction of lattice 

properties to guide design.     

 
 

Figure 3.16: Comparison of effective lattice 

modulus predicted by FEA simulation vs 

experimental modulus measurements vs 

utilizing corrected thickness (t) values 

Figure 3.17: Simulation and experimental 

values of the effective elastic modulus 

measurements vs (t/L) utilizing the corrected 

thickness (t) values 

 

3.5 Design Space and Scaling of Lattices Researched  

As mentioned above, different combinations of thickness and unit cell length that produce 

the same (t/L) ratio for the diamond lattice configuration will have constant effective modulus and 

density values. Figure 3.18 presents a chart that can identify potential unit cell length and thickness 

for given stiffness and density. Along the dark lines are FEA values that are then extrapolated 
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(dashed lines) to expand the amount of design space for diamond lattice parameters. The shaded 

triangular region is where the relative density limit of 30% is drawn as in that region design start 

to diverge from the realm of cellular solids.  Additional limits are imposed by the process 

resolution constraints.  The minimum thickness is the minimum feature size of the part—here 

taken as 0.5 mm.  Within this region, t/L values can be selected to achieve the desired effective 

modulus values.    

 

Figure 3.18: Plot of constant curvature/density lines as a function of unit cell and thickness 

dimensions 

 

Meta-structured systems can create an effective “meta-material” with properties that can 

be tuned to specific design requirements. Generating meta-materials in the arrangement of 

diamond lattice has proven to produce structures that vary in effective elastic modulus over four 

orders of magnitude (shown in Figure 3.17). The stiffness is shown to vary to the fourth power 

with the ratio of the element thickness to the unit cell size.  This research also provides an effective 

error analysis for the thickness of laser sintered parts to assess the divergence of simulated and 
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experimental results. Once an effective thickness was applied, the experimental results were in 

agreement with FEA.   
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CHAPTER 4  

MODIFICATION OF DIAMOND LATTICE PARAMETERS TO EXPAND RANGE OF 

MECHANICAL PROPERTIES AND POISSON’S RATIO EVALUATION  

This chapter explores modifying diamond lattice parameters other than unit cell length (L) 

and thickness (t). By modifying different build parameters diamond lattice properties are further 

evaluated to expand the range of attainable properties in the previous chapter. This chapter also 

provides analysis for Poisson’s ratio of diamond lattices. 

4.1 Scaling Diamond Lattice Properties into other Materials and Ashby Charts 

This research establishes a well-defined effective stiffness and density range for diamond 

lattices constructed of PA 2200 as the material. PA 2200 manages to range across 5 orders of 

magnitude for stiffness and reaching stiffness and density values of 56 MPa and 262 kg/m3 

respectively-employing the relative density limit of 30%. These values are meaningful but during 

research it was thought: how can we extend the range of properties attainable without changing 

build parameters besides thickness and unit cell length? The answer resides in scaling the diamond 

lattices into other materials other thanNylon.  

Scaling diamond lattice values into other materials of: other thermoplastics like ABS 

(Acrylonitrile butadiene styrene), PLA (Polylactic acid); and especially metals of: Steel, Titanium, 

and Aluminum were of particular interest as alternate materials and commonly 3D printed. To 

obtain the correct scaling values for effective stiffness and density the relative stiffness and density 

was utilized. The relationship between relative stiffness and density according to thickness and 
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unit cell length has already been acquired through the prior analysis of this research. By equating 

the known relative stiffness and density values for Nylon (PA 2200) to another relative value for 

another material we can calculate the effective stiffness and density values. Equation 11 and 

Equation 12 below show the equated relationship for relative stiffness and density.  

 
(

𝐸∗

𝐸𝑏𝑢𝑙𝑘
)

𝑁𝑦𝑙𝑜𝑛

=  (
𝐸∗

𝐸𝑏𝑢𝑙𝑘
)

𝐴𝑙𝑡.𝑀𝑎𝑡′𝑙

  
 

Equation 11 

 

 

(
𝜌∗

𝜌𝑏𝑢𝑙𝑘
)

𝑁𝑦𝑙𝑜𝑛

=  (
𝜌∗

𝜌𝑏𝑢𝑙𝑘
)

𝐴𝑙𝑡.𝑀𝑎𝑡′𝑙

 
Equation 12 

 

To calculate the effective stiffness and density value for another material simply multiply 

the relative stiffness or density by the bulk property of an alternate material. Table 3 presents the 

bulk material properties used to calculate effective stiffnesses and densities for alternate materials. 

This method will reveal effecttive stiffness and density values according to thickness and unit cell 

length for the alternate materials in Table 3.  

Table 3: Bulk material properties  

Material 
Bulk Modulus - 

𝑬𝒃𝒖𝒍𝒌  (GPa) 

Bulk Density -

𝝆𝒃𝒖𝒍𝒌 (kg/𝐦𝟑) 

Nylon 1.7 930 

ABS 2.0 1020 

PLA 3.3 1250 

Steel 200 7900 

Ti 120 4650 

Al 69 2700 

 

Figure 4.1 (also employing the realtive density limit of 30%) below shows the plots of 

calculated effective stiffness versus  t/L for different materials and shows a drastic change in the 

range of stiffness attainable for diamond lattices. Contrasting ABS to steel, results signify an 

increase in stiffness from 56 MPa to 7 GPa, or 12,400% increase. The massive increase in the 

stiffness comes from the fact of the bulk stiffness of the steel and other metal is much higher than 
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Nylon (PA 2200). As for the thermoplastics of ABS and PLA, stiffness was relatively similar 

because the bulk stiffness is on the same order of magnitude as Nylon (PA 2200). Figure 4.2 

directly compares the stiffness and density for  the metal materials also including t/L values. Figure 

4.2 interprets the steel will have the stiffest lattice but also the highest density for a given t/L. The 

metal lattices add apporximately another two orders of magnitude for stiffness attainable.  

  
Figure 4.1: Effective stiffness vs t/L for 

different materials 

Figure 4.2: Effective stiffness vs effective 

density for metal diamond lattices 

 

 Extending diamond lattices into metals also increases the design space vastly. Section 2.4 

introduces the potential design space lattice structures could fill. When the diamond lattice analysis 

includes metal materials, overlaid material property charts below illustrate the design space 

fulfilled by diamond lattices. Analyzing the diamond lattice overlay onto the material property 

chart of Figure 4.3 the diamond lattice materials fit well into the porous solids domain region. 

Figure 4.4 displays a direct comparison of diamond lattices to other recently researched lattice 

structures. It should be noted Figure 4.4 terms other “lattice” structures. These lattices were stretch 

dominated lattice configuration so the reason for higher stiffness to weight ratios. Remember 
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stretch dominated lattices seek to optimize specific stiffness unlike bending dominated structures 

operating in the low stiffness bending regime.  

Both material property charts below show metal diamond lattices fit well to metal foams 

and also into regions of solid natural materials and engineering polymers. This is analogous to the 

cellular metal diamond lattice having the same stiffness and density as a “solid” natural material 

or polymer. A diamond lattice structure having the ability to mimic stiffness of a solid polymer 

drives multi-functionality. Since the diamond lattice is not a solid material but cellular and porous, 

it provides be flexibility and compliancy at the same stiffness as a solid material. The porosity also 

reduces the amount of material thus generating a lightweight structure. As previously mentioned, 

the property of compliancy pertaining to a diamond lattice yields an energy absorbent structure. 

The porous structure also allows for a convective fluid to pass through allowing a potential cooling 

or heating effect. Thus, instead of a solid material as structural members, diamond lattices provide 

the same stiffness capable of multiple functions. This realization proves the design space for 

diamond lattices as lightweight, multifunctional, load bearing structures to potentially replace solid 

structural material.  
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Figure 4.3: Modulus vs density material property chart for porous, cellular solids [49] 

 

 
Figure 4.4: Overlaid material property chart encompassing design space of lattice 

structures [50] 
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4.2 Double Arc Configuration 

The previous section presents deviation from the (t/L) curve and filling the design space of 

diamond lattice properties, but how could diamond lattice stiffness be enhanced to increased values 

of stiffness for the same density?  One modification to diamond lattices creates double arcs for 

struts. Double arc (DA) diamond lattices essentially creates a circular arc of uniform thickness 

where a single strut existed in the standard (St.) diamond lattices. Figure 4.5 illustrates a diamond 

lattice with double arc configuration. The radius of curvature was set in order to intersect the 

joining nodes an individual arc strut connects. To connect the joining nodes, the radius of curvature 

relates to unit cell length (L) by: (radius = 0.433*L). Double arc simulations were analyzed for 

strut thickness (t) for the different unit cell length (L) in Table 4. It is hypothesized that creating a 

double arc would increase stiffness-but would there be tradeoffs with the increase in stiffness?  

 
Figure 4.5: Diamond lattice double arc (DA) front view (a) and isometric view (b) 

 

 Figure 4.6 and Table 4 double arcs display an increase in stiffness from 2.5 – 3 times the 

stiffness of the standard diamond lattice. This confirms the hypothesis of increase stiffness but the 

double arcs also increase the density of an individual diamond lattice. Density for a double arc is 

1.6 – 2 times a standard diamond lattice. Approximately double the density falls logically with the 
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reasoning a double arc will basically have a double strut for a given thickness (t) instead of a single 

strut for a standard diamond lattice. 

 Effective stiffness versus effective density for double arc and standard diamond lattices 

insinuate a tradeoff. Analyzing Table 4 shows lattices of the same unit cell length (L) and thickness 

(t) double arcs will generate an average of 2.68 times the stiffness and an average of 1.84 the 

density. However it is interesting when comparing the curves of Figure 4.7 considering stiffness 

versus density for double arc and standard diamond lattices. If one interpolates a constant stiffness 

line; for example 1 MPa on Figure 4.7, and intersects the diamond lattice curves the data shows 

standard diamond lattices will be less dense than a double arc lattice of the same thickness.  

However, Figure 4.7 shows that the density/stiffness relationships are very similar for single and 

double arc lattices.  When interpreting Figure 4.7 in this manner, the standard diamond lattice 

produces a more efficient structure in terms of stiffness and density. On the other hand if seeking 

to optimize stiffness without a sharp concern for density then double arcs result in a higher stiffness 

lattice when comparing the standard diamond lattice for the same element thickness and unit cell 

size.  This may be helpful when working around feature limits of a manufacturing process. 

Another aspect comparing double arcs and standard diamond lattices is the exponents of 

Figure 4.6 and Figure 4.7. Inspecting the charts show the double arcs have a higher exponent than 

the standard diamond lattices. A higher exponent implies different scaling of stiffness with the unit 

cell and density parameters. This is seen in Figure 4.7 as a decrease in the distance between the 

stiffness off the single and double arc at higher density values.   
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Figure 4.6: Diamond lattice double arc 

and standard effective stiffness vs unit cell 

length (L) 

Figure 4.7: Diamond lattice double arc and 

standard effective stiffness vs effective 

density 

 

Table 4: Ratio of double and standard diamond lattice stiffness and density 

Unit Cell 

Length (L) 
Thickness  (t) t/L 

  

5.0 0.5 0.100 3.02 1.63 

5.0 1.0 0.200 N/A N/A 

7.5 0.5 0.067 2.71 1.83 

7.5 1.0 0.130 2.70 1.58 

10 0.5 0.050 2.58 1.88 

10 1.0 0.100 3.05 1.75 

12 0.5 0.042 2.46 1.95 

12 1.0 0.083 2.92 1.81 

15 0.5 0.033 2.34 1.96 

15 1.0 0.067 2.75 1.88 

20 0.5 0.025 2.40 2.00 

20 1.0 0.050 2.53 1.93 

 

4.3 Evaluation of Poisson’s Ratio 

Since the diamond lattices design intent is a bending dominated structure, this research 

hypothesizes a relatively high positive Poisson’s ratio. The ratio between lateral to axial strain 

induced during uniaxial loading of a material or structure defines Poisson’s ratio (υ). 
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Materials with a positive Poisson’s value under compressive loading will contract in the 

loading direction and expand in the orthogonal (lateral) directions. When a material is placed in a 

state of tension it will stretch in the direction of applied load and contract in orthogonal directions. 

The limit for most isotropic material is a positive Poisson’s ratio of υ = 0.5; however, structures 

built with the intent of very high shear strain can breach the isotropic limit. Negative Poisson’s or 

“auxetic structures” ratios behave exactly opposite of its positive counterpart and have a limit of υ 

= -1. More information on auxetic structures can be found from the research by Zhang, Soman, 

and Alderson. [51-53] 

For diamond lattices we concentrate on compressive loading conditions. Compression in the 

axial direction causes the axial strain to equal Equation 13 where Figure 4.8 defines (Δ𝑢𝑧)  as the 

change in length upon compression and (ℎ𝑜) as the initial length of the diamond lattice.   

 

𝜀𝑎𝑥𝑖𝑎𝑙  =  
Δ𝑢𝑧

ℎ𝑜
  

 

Equation 13 

 

 

As mentioned above as a compressive load applies axially to a structure it will expand in the lateral 

direction. This expansion causes a lateral strain. The lateral strain is prescribed in Equation 14. 

Since the expansion is lateral as seen in Figure 4.8, the width of the lattice is now defining the 

lateral strain by (Δ𝑢𝑥) designating the horizontal displacement of each side when compressed (the 

expansion) and (𝑤𝒐) nominating the original width of the lattice. The change in width is the 

expansion on the outside edges in the horizontal direction for both sides of the lattice. 

 

𝜀𝑙𝑎𝑡𝑒𝑟𝑎𝑙  =  
2Δ𝑢𝑥

𝑢𝑜
 

 

Equation 14 
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 After calculating both the axial and lateral strains, Poisson’s ratio can be found. Equation 

15 shows the relationship of the lateral strain divided by the axial strain to equal Poisson’s ratio 

(𝜐). 

 
𝜐 =  

−𝜀𝑙𝑎𝑡𝑒𝑟𝑎𝑙

𝜀𝑎𝑥𝑖𝑎𝑙
 

 

Equation 15 

 

 

Evaluation of Poisson’s ratio for diamond lattice entailed the same simulation method as 

the stiffness extraction. A linear study for 1% strain was applied axially (𝜀𝑎𝑥𝑖𝑎𝑙) to different 

combinations of (t/L) values. After the simulation completed the measurement of Δ𝑤 was extracted 

to find the lateral strain (𝜀𝑙𝑎𝑡𝑒𝑟𝑎𝑙). Once the lateral strain was calculated the Poisson’s ratio was 

found. 

 
 

Figure 4.8: Elongation in axial and 

transverse directions for Poisson’s ratio 

Figure 4.9: Poisson’s ratio for diamond 

lattices 

 

Figure 4.9 indicates Poisson’s ratio for different relative densities. At low relative densities 

Poisson’s ratio is close to 0.5 and decays in decreasing value to ~0.4 as the relative density 

approaches the cellular solid limit of 30%. A value of 0.5 for Poisson’s ratio is the maximum an 

isotropic material can achieve and only structures designed for high shear can pass the 0.5 limit. 
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Most metals have Poisson’s ratio of 0.3 ±0.0.5, polymers ~0.4, and rubber (0.48) being the only 

material approaching the limit of Poisson’s ratio. [54] The diamond lattices ability to reach 

Poisson’s ratio of 0.5 is interesting as it places the structure near the max and above most materials 

and structures.  

A value of 0.5 for Poisson’s ratio of isotropic materials means the material is 

incompressible. A near incompressible material-like rubber or water- does not allow 

compressibility and volume is conserved. [55, 56] A great application for rubber is O-rings and 

sealants. For O-rings and sealants volume conservation is desired because when an O-ring or 

sealant is compressed, the volume of material expands in the lateral direction thus creating a seal 

for the mated parts. A diamond lattice close to a value of 0.5 for Poisson’s ratio will approach 

incompressibility. If applications require large expansion in the lateral direction, diamond lattices 

could fulfill this requirement. 

An application that has potential for diamond lattices while taking advantage of the high 

Poisson’s ratio is a mechanical switch. Imagine a situation where the diamond lattice is being used 

as a structural lattice and is being compressed. With a high Poisson’s ratio there will be large lateral 

displacement which can be used to execute closing a switch. If a load is not supposed to exceed a 

certain force upon compression the diamond lattice’s lateral displacement could contact a limit 

switch and stop the loading. This potential application could prevent damage of the lattice itself of 

being loaded before failure and also protecting other parts connected to the lattice.  

The reasoning why the Poisson’s ratio decays as the relative density increases for diamond 

lattice resides in the struts becoming relatively thicker. As either the thickness (t) increases or the 

unit cell length (L) decreases the relative density increases because the struts are increasing in 

relative thickness for the diamond lattice. With the struts increasing in relative thickness, Euler 
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beams become less accurate.  Slender struts promote bending so a low relative density diamond 

lattice will closely approach the theoretical limit of isotropic, solid materials for Poisson’s ratio of 

0.5. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

This thesis explored the design space for low stiffness, bending dominated structures in the 

form of diamond lattice configuration. Diamond lattices exemplify a bending dominated structure 

because of the obtuse angles of its strut members and the lower number of connections of struts at 

the joints. The wide sweeping angles allow for the structure to bend when a compressive load is 

applied. This chapter begins with reiterating the motivation for this thesis. Concluding analysis 

follows the motivation in terms of experimental versus FEA data and also modifications of the 

diamond lattice parameters for expansion of properties.  

5.1 Motivation and Thesis Goals 

The goal of this thesis is to evaluate diamond lattice mechanical properties (specifically 

stiffness and density) to fulfill meta-material design space. Previous work focused on maximizing 

the specific stiffness in the meta-material design space. Maximizing specific stiffness uses 

reinforced geometry to enhance the stiffness and strength of a lattice structure; but these same 

reinforcements prevent bending of the struts. With bending prevented, strains are small and energy 

absorption is sacrificed. This is where the potential for diamond lattices becomes valuable in the 

realm of low stiffness, energy absorbent structures.  This thesis is successful in documenting the 

range of effective stiffness that can be reached by diamond lattices for potential use in energy 

absorbent applications. 
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5.2 Experimental versus FEA Analysis 

Chapter two’s central theme describes the foundation of cellular solids by detailing how the 

governing principles will promote a cellular lattice structure response. Much of the chapter focused 

on the derivation and description of bending-dominated structures and to display the design space 

available. Chapter three validates the relations derived in chapter 2 both experimental and 

simulated. At first, experimental and simulation data entailed a discrepancy to not fully agree. 

Further analysis ensued to explain the discrepancy and was found in analyzing the effective 

thickness of laser sintered diamond lattices. 

Laser sintering my leave behind lightly compacted layers on the outer surface of a part’s 

geometry. In the case of the diamond lattices, the lightly compacted layers changes the effective 

thickness of the struts (t). The lightly compacted layers on the outer surface of the struts essentially 

made the diamond lattice struts respond thinner than expected by a constant amount that was 

independent of the total strut size. The lightly compacted layers contribute to weight and thickness 

measurements but do not increase the mechanical response of the diamond lattice. Lightly 

compacted layers constitute a larger percentage of the strut thickness for smaller strut sizes 

therefore these elements deviate farther from predictions. A thickness correction was applied to 

the experimental data to find an effective thickness of the laser sintered diamond lattices; once 

applied the experimental data shifted to be in agreeance well with simulated data.  

 After correction, both experimental and simulated data proved the relationship of the 

diamond lattices build parameters to effective stiffness and effective density to hold true for a 

structure in the bending dominated regime. From chapter two’s derivations, bending dominated 

structures relate relative density to a squared (t/L) relationship (Equation 2). Since relative stiffness 

derives a squared relationship of relative density (Equation 5), build parameters thickness (t) and 
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unit cell length (L) are proportional to effective stiffness to the fourth power (Equation 6). The 

fourth power relationship is consistently shown in the charts of chapter 3 and confirms diamond 

lattices are indeed bending dominated structures. Chapter 3 also shows that diamond lattices 

constructed of PA 2200 can tune stiffness range over four orders to magnitude. Four orders of 

magnitude is a significant portion of design space for a wide range of applications for low stiffness. 

5.3 Modification for Property Expansion of Diamond Lattices 

Chapter 4 presents modifications to the diamond lattices to expand the range of properties 

attainable. Chapter 3 evaluates diamond lattices constructed of the material PA 2200 and changes 

build parameters of thickness and unit cell length.  Modifying other parameters like strut width 

and the build material yield a broader range of properties for the diamond lattice. 

PA 2200 is a relatively low modulus material; however if we use a build material of a much 

higher stiffness the diamond lattice stiffness range is expanded vastly. By varying both diamond 

lattice geometry and material, the range of attainable stiffness value increases from four orders of 

magnitude to almost 7. Scaling into other materials-especially metals- allows for comparison of 

diamond lattices to other solid materials and other lattices. Overlaying the diamond lattices onto 

material property charts shows metal diamond lattices can yield the same stiffness and density as 

a fully solid thermoplastic or natural material. This discovery is valuable in the sense that now 

instead of a solid structural material, the diamond lattices can function with the same stiffness but 

also offer versatile functions. A structural material constructed of a lattice allows for multipurpose 

functions of energy absorbance (for bending dominated structures) with potential versatile 

functions of: lightweight, filtration, heat dissipation consisting of transverse convective flow, bio 

engineering inserts, etc. compared to a solid structural material of the same stiffness without 

secondary functions or benefits. 
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Poisson’s ratio for diamond lattice was found to be in the range of 0.4 – 0.5. The Poisson’s 

ratio decreased as a function of increasing relative density. As the relative density increases the 

strut thickness becomes relatively thicker; a thicker strut element resists bending more than slender 

struts. At low ends of relative density, the Poisson’s ratio is near 0.5, a rare characteristic of 

materials and structures. Even at the higher relative density values of 30% the diamond lattice is 

still on the high end of Poisson’s ratio at 0.4.  

5.4 Recommendations for Future Work 

Future work for diamond lattices considers further exploration for isotropy. Confirming the 

diamond lattice is isotropic is valuable as it means the diamond lattice would have the same 

mechanical response in all directions. Having the same stiffness reaction in the longitudinal and 

lateral directions generates a structure that can be loaded regardless of direction.  

Other work can be done evaluating different loading conditions placed on diamond lattices. 

Shear forces when placing the diamond lattice into a sandwich structure are an interesting aspect 

that needs work done. All of the experiments and simulations of the diamond lattices were 

completed with uniaxial loading, but what would happen if the diamond lattices was placed in a 

state of biaxial or even multiaxial loading? Research could be done with other loading conditions 

to analyze the complicity of the stiffness reaction.  

Another central aspect for further research lies in quantifying the energy absorbance the low 

stiffness structures. Completing experimental fatigue tests with cyclic loading can evaluate how 

much energy will be absorbed when repeatedly loaded. Energy absorption of diamond lattices 

would be valuable to quantify as this research has already proven a range of tunable stiffness that 

could tuned even further for specific energy absorbent applications. 



www.manaraa.com

58 

 

Lastly, while this research proves diamond lattices fill design space gaps in meta-material 

space, more work can be done on lattice structures that can fill even more design space-specifically 

different areas on the material property charts of chapter 4. Further research could be done in 

modifying the diamond lattice by changing the angles of the joining struts or maybe reinforcing 

the diamond lattice in strategic points where deformation is highest. Modifying the diamond lattice 

or even analyzing other lattice structures could fill more design space and open up many more 

applications for lattice structures.   
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